Late-Term Smoking Cessation Despite Initial Failure: 
An Evaluation of Bupropion Sustained Release,
Nicotine Patch, Combination Therapy, and Placebo

Brenda D. Jamerson, PharmD,1 Mitchell Nides, PhD,2 
Douglas E. Jorenby, PhD,3 Rafe Donahue, PhD,4 Peter Garrett, MD,1 
J. Andrew Johnston, PharmD,1 Michael C. Fiore, MD,3 
Stephen I. Rennard, MD,4 and Scott J. Leischow, PhD5

1GlaxoSmithKline, Research Triangle Park, North Carolina; 2Los Angeles Clinical Trials, 
Los Angeles, California; 3University of Wisconsin Medical School, Madison, Wisconsin, 
4University of Nebraska Medical Center, Omaha, Nebraska, and 5Arizona Program for 
Nicotine and Tobacco Research, Tucson, Arizona

ABSTRACT

Objective: The purpose of this study was to evaluate the efficacy of long-term use of bupropion sustained release (SR), the nicotine patch, and the combination of these 2 treat- 
ments in patients who initially failed treatment.

Methods: This was a post hoc analysis of a multicenter, double-blind, randomized, 
placebo-controlled clinical trial in 893 smokers. Patients were randomly assigned to 9 
weeks of treatment with placebo (n = 160), bupropion SR (n = 244), nicotine patch (n = 
244), or a combination of nicotine patch and bupropion SR (n = 245). The study was orig-
naturally designed with a follow-up period of 52 weeks. In this analysis, short-term success 
was defined as smoking cessation after 14 or 21 days of therapy and long-term success 
was defined as smoking cessation after >21 days of therapy. Patients who did not achieve 
short-term success were evaluated for long-term success at week 9 (end of treatment), 6 
months, and 1 year after the start of the study.

Results: The mean age of the smokers was 44 years. The majority (93%) of patients 
were white, and 52% were female. The study subjects smoked an average of 27 cigarettes 
per day. Among the 467 patients who initially failed treatment in the first 3 weeks, treat-
ment with bupropion SR alone and in combination with the nicotine patch produced sig-
nificant increases in successful smoking cessation rates from weeks 4 to 9 (19% bupro-
piion SR or combination, 7% nicotine patch, 7% placebo), at month 6 (11% bupropion 
SR, 13% combination, 2% nicotine patch, 3% placebo), and at month 12 (10% bupropion 
SR, 7% combination, 2% nicotine patch, 1% placebo) (P < 0.05 for bupropion SR and 
combination vs nicotine patch or placebo).

Accepted for publication: March 28, 2001.
Printed in the USA. Reproduction in whole or part is not permitted.

NOTICE: This material may be protected 
By copyright law (Title 17 U.S. Code)
Despite Initial Failure: Sustained Release, therapy, and Placebo

hell Nides, PhD,1 ahuay, PhD,2 Peter Garrett, MD,1 nel C. Fiore, MD,3 J. Leischow, PhD3

1North Carolina, 2Los Angeles Clinical Trials, mson Medical School, Madison, Wisconsin, ha, Nebraska, and 3Arizona Program for

ACT

evaluate the efficacy of long-term use of patch, and the combination of these treat

t. a multicenter, double-blind, randomized, rs. Patients were randomly assigned to 9
propranolol SR (n = 244), nicotine patch (n = 244), and placebo (n = 245). The study was or
weeks. In this analysis, short-term success 21 days of therapy and long-term success
ys of therapy. Patients who did not achieve in success week 9 (end of treatment), 6

44 years. The majority (93%) of patients objects smoked an average of 27 cigarettes
failed treatment in the first 3 weeks, treat
with the nicotine patch produced sig
ction rates from weeks 4 to 9 (19% pro
6% placebo), at month 6 (11% pro
6% patch), and at month 12 (10% pro
6% placebo) (P < 0.05 for propranolol SR and

Conclusion: Among patients who ini
ally failed treatment, continued therapy with propranolol SR, either alone or in com
bination with the nicotine patch, resulted in significantly higher short- and long-
term smoking cessation rates than treatment with the nicotine patch alone or place
bo.

Key words: bupropion SR, nicotine patch, smoking, smoking cessation. (Clin
Ther. 2001;23:744–752)

INTRODUCTION

Smoking cessation usually requires several attempts before long-term success is
achieved. Each year ~40% of the 50 million smokers in the United States attempt to
quit, and ~6% are successful.1 Of those who initially succeed, up to 80% will ex
perience a relapse on a 12-month pe

Pharmacologic therapy, in combi
nation with a behavioral counseling
program, has been moderately successful in achieving smoking cessation rates that
are ~2 times those achieved with placebo.2 Therapies with bupropion sustained release
(SR), compared with placebo, has been shown to result in statistically significantly higher
end-of-treatment (7-week) and 12-month cessation rates (7-week: 38% vs 19%; 12-month: 23% vs 12%).4

In addition, a number of currently marketed products containing nicotine, in
cluding chewing gum, patches, inhalers, and nasal sprays, have shown efficacy, al
though the success rates vary with each. Early relapse is common in studies using
nicotine replacement therapy and is often predictive of an unsuccessful cessation at
tempt.5 A recent study found that cigarette re-exposure to smokers who had decided to
quit resulted in 100% relapse within 2 days after exposure.4 However, the efficacy of

continued pharmacologic treatment in indi
viduals who resume smoking shortly after
choosing to quit has not been examined.

A MEDLINE® literature search from 1966 to the present combining smoking
cessation and prediction as search terms and a second literature search combining
the search terms smoking relapse and pred

tion revealed no reports of smoking
abstinence among patients who were still
smoking in early therapy.

The efficacy of placebo, bupropion SR, nicotine patch, and a combination of
bupropion SR and nicotine patch were compared in a randomized, double-blind
clinical study.5 The treatment period lasted 9 weeks; day 8 (second week of treat
ment) was targeted as the quit date. Effic
acy was based on continuous abstinence rates, weekly point-prevalence abstinence
rates from day 22 through week 10, and 6-
and 12-month abstinence rates. Con

110 ppm. Point prevalence was defined as no
smoking since the previous clinic visit.

3 All active treatments were shown to be effective, although only bupropion SR and

combination therapy were consistently and statistically significantly superior to
placebo in all primary outcome measures.4

The present report is a post hoc analysis of these trials data to determine whether pa

tients who initially fail a smoking cessation attempt should continue to use bupropi

SR, the nicotine patch, or both to eventu

ally achieve successful cessation. There

fore, the primary objective of this analysis was to determine whether continued treat
ment with bupropion SR, nicotine patch, or a combination of the 2 results in higher ces

475
METHODS

The original investigation was a multicenter, double-blind, randomized, placebo-controlled clinical trial conducted between August 1995 and March 1997 (Figure 1). A total of 893 patients were randomly assigned to 1 of 4 treatment groups: placebo (n = 244), bupropion SR (n = 244), nicotine patch (n = 244), and combination therapy with nicotine patch plus bupropion SR (n = 245). All patients were ≥18 years of age, smoked ≥15 cigarettes per day at the time of enrollment, weighed ≥100 pounds, and wanted to quit smoking. Patients with unstable medical and psychiatric disorders (including cardiovascular disease, seizures, and major depression) were excluded from the study. The study protocol was approved by an institutional review board or ethics committee at each study site, and all patients provided written informed consent. In the original study, the mean age across treatment groups ranged from 42 to 44 years; 49% to 59% were female. The majority of patients were white (92%-94%), and the average number of cigarettes smoked per day ranged from 25 to 28.

The primary outcome measurement in the original study was the point-prevalence rate of abstinence at 6 and 12 months. Patients were considered to be abstinent if they reported in their patient diaries that they had not smoked since the previous clinic visit and if they had an expired carbon monoxide concentration ≤10 ppm in the clinic. Patients were considered to be continuously abstinent if they had not smoked after the target quit date, as reported in their patient diaries and confirmed by carbon monoxide concentrations of ≤10 ppm at all clinic visits during the 12-month study. Adverse events were based on spontaneous reporting.

Figure. Study diagram. TQD = target quit date; SR = sustained release; NTS = nicotine transdermal system (Habitrol®, Novartis Consumer Health, Inc., Summit, New Jersey).
meters at each study site, and all patients provided written informed consent. In the original study, the mean age across treatment groups ranged from 42 to 44 years; 49% to 59% were female. The majority of patients were white (92%–94%), and the average number of cigarettes smoked per day ranged from 25 to 28.

The primary outcome measurement in the original study was the point-prevalence rate of abstinence at 6 and 12 months. Patients were considered to be abstinent if they reported in their patient diaries that they had not smoked since the previous clinic visit and if they had an expired carbon monoxide concentration of ≤10 ppm in the clinic. Patients were considered to be continuously abstinent if they had not smoked after the target quit date, as reported in their patient diaries and confirmed by carbon monoxide concentrations of ≤10 ppm at all clinic visits during the 12-month study. Adverse events were based on spontaneous reporting.

After the 9-week active-treatment phase, follow-up continued until 52 weeks after the start of the study. Patients were assessed for rate of point prevalence and for continuous abstinence each week during the first 9 weeks of treatment and then at 10, 12, 26, and 52 weeks after the start of the study. At each visit, smoking status was evaluated based on self-report (from patient diaries) and confirmed by expired carbon monoxide concentration (≤10 ppm was indicative of nonsmoking status).

All patients who received buproprion SR were administered 150 mg each morning for the first 3 days, then 150 mg twice daily (morning and evening) on days 4 through 63. Patients in the nicotine patch group received a patch containing 21 mg of nicotine for weeks 2 to 7 (5 mg treatment was given in the first week); the dose was tapered to 4 mg and then 2 mg for the final 2 weeks of treatment. The target quit date for all patients was set for the second week of treatment, usually day 8. All patients received standardized weekly behavioral counseling and scheduled telephone calls at specific intervals during the treatment phase of the study. Anonley et al. provide a complete summary of these methods.

In this post hoc analysis, the primary outcome measure was the number of patients who were still smoking 21 days after the start of the study (ie, initial treatment failure). These patients were assessed for point-prevalence rate of abstinence at weeks 4 through 9, at 6 months, and at 1 year after the start of the study. The end point for these patients was the development of late-term success, defined as continuous smoking abstinence at any point after week 4. Therapy was continued until the end of the treatment phase (ie, end of week 9) or until the patient discontinued therapy (resumed smoking), whichever came first.

In an additional analysis, logistic regression was used to predict late-term success as a function of cigarette- smoking and nicotine- using scores in those patients who initially failed treatment but had late-term success. This was based on the hypothesis that those patients who missed their target quit date but still experienced a reduced level of smoking or a decrease in nicotine craving between the initiation of drug/placebo and week 3 may have had a better rate of success in late-term abstinence.

Statistical Analysis:

Statistical analyses were performed on the intent-to-treat population, assuming that all patients (treated and control) who did not complete the study had not given up smoking and therefore failed treatment. Chi-square analysis and analysis of variance were used to test for differences in baseline demographics. Comparison of continuous cessation rates was carried out via 2-tailed Fisher exact tests. A rate level of 0.05 was considered statistically significant.

RESULTS

Withdrawal data and baseline demographic characteristics of the study population (ie, age, sex, race, body weight, education, smoking habits, previous smoking cessation attempts, baseline laboratory values, and psychological profiles) have been published previously. In the original study, 10% of the study population reported a adverse event. Inpatients was the most frequent adverse event (47.5% combination, 42.5% buproprion SR, 30% nicotine patch, 19.5% placebo). In the nicotine patch group, common adverse
events included dream abnormalities (18.1% vs 2.5% in the placebo group) and application site reactions (18.5% vs 6.9% in the placebo group). In the bupropion SR group, dry mouth was also reported frequently (10.7% vs 4.4% in the placebo group).

There were no significant differences among the 4 treatment groups in demographic or withdrawal characteristics. Potential risk factors for long-term failure in smoking cessation, such as age, sex, history of depression, and other factors, were found to be equally distributed among patients with early failure.

Of the 893 patients enrolled in the original study, 467 failed initial treatment and 426 were termed initial successes (Table I). Of the patients who failed initial treatment, 38 achieved late-term success by week 9. The specific demographic characteristics of patients evaluated in this analysis are shown in Table I. There were no statistically significant differences in demographic characteristics between the initial-failure group and either the original study group or the group that achieved initial success, or among the 3 initial-failure groups. The 3 initial-failure groups had moderately high cigarette use and high addiction scores (Fagerstrom tolerance scores). Although none of the patients had been diagnosed with current major depression, per the exclusion criteria, ~20% had a history of depression.

**Initial Failure/Late-Term Success**

For this analysis, initial failure was defined as smoking at the end of week 3. A confirmatory analysis, with initial failure defined as smoking at the end of week 2, was conducted to determine whether failure to quit smoking at an earlier time point (ie, end of week 2) predicted long-term failure. Treatment and counseling were continued for all patients with initial fail-

| Table I. Baseline characteristics of the total study population and those who experienced initial success, initial failure, initial failure/late-term success, and initial failure/late-term failure. |
|-----------------|-----------------|-----------------|-----------------|
| Characteristic  | All Patients     | Initial Failure | Initial Success |
|                 | (N = 883)        | Initial Failure | Initial Success |
| Mean age, y     | 44 (N = 893)     | 43 (n = 467)    | 45 (n = 426)    |
| Race, %         | 93 (N = 893)     | 93 (n = 467)    | 93 (n = 426)    |
| White           | 7 (N = 893)      | 7 (n = 467)     | 7 (n = 426)     |
| Sex, %          | 52 (N = 893)     | 56 (n = 467)    | 48 (n = 426)    |
| Male            | 48 (N = 893)     | 44 (n = 467)    | 52 (n = 426)    |
| History of depression, % | 18 (N = 893) | 20 (n = 467) | 17 (n = 426) |
| Mean Fagerstrom score | 7.36 (N = 893) | 7.54 (n = 467) | 7.17 (n = 426) |
| Mean no. cigarettes | 27 (N = 893) | 27 (n = 467) | 25 (n = 426) |

*Scale: Possible score of 0 to 11, with scores of 6 indicating higher levels of addiction.*

748
demographic characteristics between the initial-failure group and either the original study group or the group that achieved initial success, or among the 3 initial-failure groups. The 3 initial-failure groups had moderately high cigarette use and high addiction scores (Fagerstrom tolerance scores). Although none of the patients had been diagnosed with current major depression, per the exclusion criteria, 20% had a history of depression.

**Initial Failure/Late-Term Success**

For this analysis, initial failure was defined as smoking at the end of week 3. A confirmatory analysis, with initial failure defined as smoking at the end of week 2, was conducted to determine whether failure to quit smoking at an earlier time point (ie, end of week 2) predicted long-term failure. Treatment and counseling were continued for all patients with initial failure.

The population and those who experienced late-term success and initial failure:

<table>
<thead>
<tr>
<th>Initial Success</th>
<th>Initial Failure/Late Success</th>
<th>Initial Failure/Late Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 426)</td>
<td>(n = 58)</td>
<td>(n = 409)</td>
</tr>
</tbody>
</table>

Table II. Late-term success of patients who were still smoking at the end of week 3 (initial failure):

<table>
<thead>
<tr>
<th></th>
<th>Cessation at Weeks 4 to 9</th>
<th>Cessation at 6 Months</th>
<th>Cessation at 1 Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo, no. (%)</td>
<td>119/160 (74)</td>
<td>8/119 (7)</td>
<td>3/119 (3)</td>
</tr>
<tr>
<td>NRT patch, no. (%)</td>
<td>119/160 (74)</td>
<td>104/138 (77)</td>
<td>2/138 (1)</td>
</tr>
<tr>
<td>Bupropion SR, no. (%)</td>
<td>119/160 (74)</td>
<td>22/115* (19)</td>
<td>13/115* (11)</td>
</tr>
<tr>
<td>Contamination NRT+c</td>
<td>95/245* (39)</td>
<td>1895* (19)</td>
<td>1295* (13)</td>
</tr>
</tbody>
</table>

NRT = nicotine replacement therapy; c, control patch; SR = sustained release.

*P < 0.05 versus placebo.

**Cigarette Reduction and Viscous Craving as Predictors of Late-Term Success**

To determine surrogate markers that would be predictive of late-term success despite early failure, we examined the data for any correlation between fewer cigarettes smoked in initial treatment failures and eventual success. We also examined whether lower craving scores occurred in patients who achieved late-term success in quitting (ie, during weeks 4 through 7). There were no differences in either variable between those who successfully quit and those who did not, either in the group as a whole or in any treatment group within the study.
DISCUSSION

This post hoc data analysis of a smoking cessation trial is the first analysis comparing the nicotine patch with bupropion SR for both short- and long-term success. Results demonstrated that of the 3 treatments, only bupropion SR alone and in combination with the nicotine patch produced effective late-term success in patients who experienced early failure.

Previous work has demonstrated that long-term success with the patch was directly related to both the dose of nicotine administered and the degree of nicotine addiction of the subject, although this may not be a uniform finding. Other investigators have shown that any smoking within the first 2 to 3 weeks after initiating treatment is a powerful predictor of both short- and long-term failure with the nicotine patch, even with the use of a higher-strength (21- or 22-mg) patch.

In contrast, treatment with bupropion SR or the bupropion/nicotine patch combination resulted in significantly higher abstinence rates for late-term smoking cessation (continued cessation through 52 weeks) in subjects who failed initial treatment (ie, subjects who were still smoking at week 3 of treatment). We also found a statistically significant result when failures were defined as smoking at week 2, a result that was consistent with that in the primary analysis; however, because some patients may not have fully engaged in a cessation attempt at week 2, we chose week 3 for the primary analysis.

To explore the mechanism for late-term success with bupropion SR treatment, we hypothesized that smoking reduction or attenuation in craving may help smokers to quit. However, we did not find any difference in smoking reduction or attenuation in craving in subjects who initially failed treatment but eventually quit smoking. These negative findings may be the result of the small sample size, which prevented the gathering of adequate data to examine craving effects, or the design of the trial, which prohibited examination of abstinence as the primary success endpoint. Therefore, a smoking reduction hypothesis merits further testing in a prospectively defined population and using specific measures of craving.

A potential limitation of this analysis is that this was a screened and selected study population composed of chronic smokers who were motivated to quit and had volunteered for the study. It has been previously shown that efficacy in smoking cessation studies is greater when using self-referred and screened smokers than in studies using unrestricted recruiting of successive smokers. Therefore, the internally generated motivation and homogeneity of this population may have produced results that might not be representative of the general population of smokers.

The efficacy of continued treatment with bupropion SR, either alone or in combination with the nicotine patch, in producing success in smokers who had failed early in their attempt at smoking cessation is a new finding. It suggests that patients receiving bupropion SR (either alone or in combination) should continue to receive treatment even if they initially fail treatment. Since it is generally known that smokers do not make a serious smoking cessation attempt more than once per year, it is important for them to understand how to optimize their chances of success during the attempt.

The primary findings of this report are based retrospectively on patients who initially failed treatment, and these patients
tion in craving in subjects who initially failed treatment but eventually quit smoking. These negative findings may be the result of the small sample size, which prevented the gathering of adequate data to examine craving effects, or the design of the trial, which prohibited continuation of abstinent behavior in the primary success endpoint. Therefore, a smoking reduction hypothesis merits further testing in a prospectively defined population and using specific measures of craving.

A potential limitation of this analysis is that this was a screened and selected study population composed of chronic smokers who were motivated to quit and had volunteered for the study. It has been previously shown that efficacy in smoking cessation studies is greater when using self-selected and screened smokers than in studies using unrestricted recruiting of successive smokers. Therefore, the internally generated motivation and homogeneity of this population may have produced results that might not be representative of the general population of smokers.

The efficacy of continued treatment with bupropion SR, either alone or in combination with the nicotine patch, in producing success in smokers who had failed to quit their attempt at smoking cessation is a new finding. It suggests that patients receiving bupropion SR (either alone or in combination) should continue to receive treatment even if they initially failed. Since it is generally known that smokers do not make a serious smoking attempt more than once per year, it is important for them to understand how to optimize their chances of success during the attempt.

The primary findings of this report are based retrospectively on patients who initially failed treatment, and these patients were not randomized to treatment. Therefore, specific causality of effect based on the treatments evaluated here should be interpreted cautiously. Additional studies powered to detect differences between the use of bupropion SR alone and the use of bupropion SR in combination with the nicotine patch are needed.

CONCLUSIONS

Previous reports have demonstrated that early relapse in smoking cessation studies is predictive of lower overall smoking cessation rates. Although this study confirmed this finding with use of the nicotine patch alone, it also illustrated that continued therapy with bupropion SR, either alone or in combination with the nicotine patch, resulted in significantly higher cessation rates than did treatment with placebo. These results were sustained at 1-year follow-up. The results of this study suggest that bupropion SR should not be discontinued early in therapy and may be considered for use in combination with the nicotine patch in individuals who initially fail to quit.

ACKNOWLEDGMENT

The authors acknowledge the research direction of Alan Metz, MD, in the preparation of this manuscript.

REFERENCES


Address correspondence to: Brenda D. Jamerson, PharmD, Head, Clinical Development Depression/Dependence, Medical Affairs, GlaxoSmithKline Research and Development, 5 Moore Drive, Research Triangle Park, NC 27709–3398. E-mail: bdj7858@gsk.com